
DOCSNY-407880v1

1

EASY AS ABC: CATEGORIZING OPEN SOURCE LICENSES

Andrew T. Pham1, Matthew B. Weinstein2, Jamie L. Ryerson3

With more than 180,000 open source projects available and its more than 1400 unique licenses,

the complexity of deciding how to manage open source usage within “closed-source”

commercial enterprises have dramatically increased.4 Because of the complexity and risks

associated with open source—where source code is made freely available for all to review, edit,

and use—many closed-source commercial enterprises discourage or prohibit use of open source;

a common and short-sighted practice. With a proper open source management framework, open

source can be an invaluable resource, and its risks can be understood, managed and controlled.

This article proposes a simple, consistent and effective open source categorization and

management system to enable a peaceful coexistence between open source and closed-source

codes.

Free and open source software (“FOSS” or collectively “open source”) is a valuable tool, but one

that must be understood to be used effectively. The litany of risks associated with use of open

source include: having to release a derivative product incorporating open source under the same

open source license; incorporating code that infringes a patent; violating an open source license’s

attribution requirements; and a lack of warranties and indemnities. Given the extensive

investment of time, money and resources that goes into product development, it comes as no

 This article is an edited version of the original, which dealt not only with categorizing open source licenses
but also a wider array of issues associated with implementing an open source policy. The original article can be
found at: Andrew T. Pham and Matthew B. Weinstein, Living with Open Source: Implementing, Managing and
Enforcing a Uniform Policy for your Enterprise, LES NOUVELLES: JOURNAL OF THE LICENSING EXECUTIVES

SOCIETY, March 2010.
 Special thanks to Larry Aaronson, Peter Fante, and Steven I. Weisburd for their support and contributions.
1 Associate General Counsel, Global Intellectual Property, Verint Systems Inc. Mr. Pham manages all
aspects of IP for Verint, including patent strategy, prosecution and litigation, trademark, copyright, licensing and
open source.
2 Associate, Dickstein Shapiro LLP. Mr. Weinstein specializes in patent counseling and enforcement. Before
embarking on his legal career, Mr. Weinstein founded and later sold a technology consulting firm that designed and
implemented open source software for its clients.
3 Associate, Dickstein Shapiro LLP. Mr. Ryerson is an associate in Dickstein Shapiro’s Intellectual Property
Practice Group.
4 See www.sourceforge.net. Also, for the sake of simplicity, the term “open source” as used in this article
shall mean software source code publicly available for use and review, whereas “closed-source” shall mean software
source code is kept confidential.

nick
Typewritten Text
2010 Copyright. Andrew T. Pham, Matthew B. Weinstein, Jamie L. Ryerson.



DOCSNY-407880v1

2

surprise that companies may be wary of using open source. Nevertheless, companies that

understand the risks can avoid them and be rewarded in terms of cost savings and increased

speed to market.

Issues raised by open source development and licensing may encompass many different bodies

of law, but there is now existing, and ever-expanding case law on FOSS which has confirmed

that FOSS licenses are enforceable and will be upheld in the U.S. and worldwide. To that end,

the United States Court of Appeals for the Federal Circuit recently held that open source license

conditions are enforceable under U.S. copyright laws.5 In addition, proponents of open source

are actively enforcing FOSS licenses. 6

Today, FOSS is widely used by software developers, often without the company legal

department’s knowledge.7 Because a blanket prohibition is nearly impossible to enforce and the

fact that there are hundreds of thousands of open source projects available, it is very important to

develop a scalable system for managing open source within a closed-source enterprise. Due to

the prevalence of FOSS in the software development community, there are literally hundreds of

variations of open source license agreements. Some are home-grown while others are modeled

after mainstream FOSS licenses such as Berkeley Software Distribution (“BSD”), Apache, MIT-

style (Massachusetts Institute of Technology), or GNU General Public License (“GPL”). As

such, understanding the different characteristics of open source license agreements – in other

words, the basic ABCs or philosophy behind the plethora of open source licenses – is key to the

5 Jacobsen v. Katzer, 535 F.3d 1373 (Fed. Cir. 2008).
6 For example, on December 11, 2008, the Free Software Foundation filed a lawsuit against Cisco Systems
alleging violations of the GNU General Public (GPL) and Lesser General Public Licenses (LGPL) in its Linksys line
of products. The Software Freedom Law Center (SFLC) has also filed and settled multiple suits on BusyBox, an
open source software licensed under the GNU GPL version 2. In Germany, courts have enjoined product
distribution and awarded legal fees and copyright infringement damages for FOSS license violations. See Free
Software Foundation News, Free Software Foundation Files Suit Against Cisco For GPL Violations,
http://www.fsf.org/news/2008-12-cisco-suit (last visited Feb. 15, 2010). See, e.g., Software Freedom Law Center
News, SFLC Files GPL Violation Lawsuit Against Extreme Networks, Inc.,
http://www.softwarefreedom.org/news/2008/jul/21/busybox/ (last visited Feb. 15, 2010); BusyBox Developers Settle
Case With Extreme Networks, http://www.softwarefreedom.org/news/2008/oct/06/busybox-extreme-settle/ (last
visited Feb. 15, 2010). See Jorge Contreras, Jr. & Belinda M. Juran, Second Injunction Enforcing GPL Issued in
Germany, http://www.wilmerhale.com/publications/whPubsDetail.aspx?publication=346 (last visited Feb. 15,
2010). See Mayank Sharma, GPL passes acid test in German court, http://www.linux.com/archive/articles/57353
(last visited Feb. 15, 2010).
7 William H. Venema, Open Source Software, National Law Journal, October 20, 2008, available at
http://www.ebglaw.com/files/24006_00510080013EpsteinB.pdf (last visited Feb. 15, 2010).



DOCSNY-407880v1

3

success of any open source policy or management framework. Thus, the first step in FOSS

management is to develop a framework for classifying or categorizing the thousands of FOSS

licenses.

While there are many different ways to categorize FOSS licenses, arguably, the greatest risk

posed by FOSS to commercial enterprises is the so-called ‘copyleft’ provisions. Copyleft — a

portmanteau of the words copyright and left — refers to a general method or licensing scheme for

making a program or other work open source, and requiring all modified and extended versions

of the program to be open source as well. These are sometimes referred to as ‘viral’ or

‘reciprocal’ licenses because any works derived from a copyleft work must themselves be

copyleft when distributed.

It is important to note that copyleft-based open source licenses have different strengths and effect

on derivative works. For example, “weak-to-medium” copyleft licenses are generally used to

license FOSS libraries. In programming-speak, these FOSS libraries are “linked,”8 or compiled

to closed-source codes. Generally, “dynamically”9 linking to these FOSS libraries and then

commercially redistributing may not trigger the requirement for the combined FOSS and closed-

source work to be distributed under that FOSS library’s license. Only changes to the FOSS

library itself become subject to the copyleft provisions of the copyleft license (not changes to the

closed-source software that links to the FOSS library).10

8 A program may consist of many source code files that are complied into object code to form the program
and linked to other object code to form an executable program.
9 Dynamic linking means that modules, such as libraries, are loaded into an application program at runtime,
rather than being linked in at compile time, and remain as separate files on disk.
10 Further, copyleft-based open source licenses can be examined for their stances on patent protection, e.g.,
whether a license promotes patent protection, or takes a negative view of it (such as the non-assertion clauses
present in GPL v3.0). See GNU General Public License v. 3.0 § 11 (stating “[i]f, pursuant to or in connection with a
single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant
a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or
convey a specific copy of the covered work, then the patent license you grant is automatically extended to all
recipients of the covered work and works based on it”).



DOCSNY-407880v1

4

In view of the above, one can create the following three-tiered classification scheme into which

FOSS licenses may be grouped (typically based on the existence and obligations imposed by the

copyleft provision):11

 Class A. FOSS components licensed under Class A licenses should be allowed to be used

with minimal consultation with the legal department, but prior review by engineering

management is highly recommended.12

 Class B. FOSS components licensed under Class B licenses can also be considered for

use in company projects under appropriate conditions.

 Class C. FOSS components licensed under Class C licenses should not be used in

company projects or should be strictly monitored and controlled.

This simple classification scheme will help closed-source commercial enterprises manage and

mitigate risks associated with unauthorized and unmonitored use of FOSS.

The proposed herein classification system looks at how an enterprise can use a FOSS license

based on its restrictions. Some FOSS licenses impose the “same license” requirement (i.e., the

open source license) on the distribution of derivative works, while others allow derivative works

to be released commercially – that is, distribute the open source code and modifications therein

11 A category-based scheme was proposed in 2006 by Sun Microsystems. See Simon Phipps, Free and
Open Source Licensing, http://mediacast.sun.com/users/sunmink/media/SunLicensingWhitePaper042006.pdf (last
visited Feb. 15, 2010) (discussing Sun Microsystem’s approach to free and open source licensing, in that it views the
FOSS continuum as a “virtuous cycle, or an endless circle in which developers share a source code commons, create
derivative works from that code, and then contribute back to the commons in the form of innovation . . . Within this
cycle, there are various degrees of freedom with regard to how developers structure their code and license the
derivative works they create from the code commons. The degrees of freedom that characterize the cycle shape the
community that forms around the use of code and reflect the kind of licensing that is associated with that use”).
12 Note that use of the open source code within the company for research and development purposes (e.g.,
software development tools or testing tools) may be distinguished from use of open source code within a company
project for outside distribution. Depending on the terms of the particular license, if code is never distributed, it may
not need to be licensed or governed by the specific terms of the open source license. But from a legal review
perspective, there should be no distinction between FOSS used in internal research and development (or testing) and
FOSS used in commercial products.



DOCSNY-407880v1

5

as closed-source (e.g., in object code13 format only). So companies should look at the extent to

which a license requires derivative works to use the same open source license.14

For example, consider the following when reviewing a FOSS license:

1. Are you creating derivative work? Has source code been modified, adapted or

combined with other codes? If not, the FOSS component can likely be used internally

and distributed without too much concern over the copyleft terms.

2. Are you distributing the derivative work? If an enterprise is planning to distribute a

derivative work, then the FOSS license must be reviewed to identify the copyleft

provision, if any.

3. Does the FOSS license contain any copyleft provisions? If yes, the analysis moves to

determine the strength of the viral effect of the copyleft provision and what source

code disclosure requirement is present.

4. Are you required to disclose the source code and license any new code under the same

conditions for the derived file? One way to view such a requirement is that certain

“chapters” or files of the code base must be disclosed, but not all of the files or the

entire project or program. In this case, only the source code to specific file where the

FOSS component is modified, adapted, inserted or combined are at risk.

5. Are you required to disclose the source code and license any new code under the same

conditions for the derived project (e.g., the derived file plus any other files that are

“combined” with the derived file)? This requirement is akin to forcing disclosure of

the entire “book,” project or program. While the disclosure of source code to a single

file may be acceptable to some companies, the disclosure of source code to the entire

13 Object codes are codes that are produced by a compiler from the source code, usually in the form of
machine language that a computer can execute directly. In other words, a compiler is a specialized program that
converts source code into object code, usually a machine code, which can be understood directly by a computer.
14

The first consideration of FOSS is the end use. Incorporation of FOSS into an externally released or
distributed product can pose risks (depending on the type of FOSS license), as “same” license requirements are
triggered upon distribution of a derivative work. Obviously, such concerns are mitigated when the use is solely
internal.



DOCSNY-407880v1

6

project or product would be unacceptable (and devastating) to nearly every closed-

source commercial enterprise.

Based on the above tests, one can classify FOSS licenses into a three-tiered classification

system.

Class A - Non-Copyleft Licenses. Sometimes called ‘Non-viral’ or ‘Academic’ licenses, these

types of licenses are preferred for commercial use as they do not place “same” license

requirements on derivative works (works developed with FOSS code). Some examples are BSD,

MIT, Microsoft Permissive License, and Apache licenses.15

This class of non-copyleft licenses generally allows companies to choose the license for the new

work.16. These licenses may, however, impose other non-restrictive conditions pertaining to

attribution. There may also be a release of liability requirement - meaning that the users must

agree not to file suit against the original author, or a notice of modifications requirement if

original code has been modified.17 These licenses should be screened before use and

distribution, despite the fact that using Class A code may not pose any major code-exposure

issues for a closed-source enterprise.

Class B – Bounded Copyleft Licenses. FOSS licenses with copyleft terms should be

considered carefully before use since they usually require new codes to be licensed under the

same license.18 Not all copyleft-based licenses impose the “same” license requirement on files

that do not contain code from the original open source code; those files can be licensed in any

license.19 This enables companies to possibly use these FOSS components commercially,

although the terms under which they are licensed are definitely considered ‘copyleft.’ Examples

include GNU Lesser General Public License (“LGPL”) and the Microsoft Public License

(“MPL”).20

15 Phipps, supra note 9, at 7.
16 Id. at 4.
17 Id.
18 Id. at 4-5.
19 Id.
20 Id. at 7.



DOCSNY-407880v1

7

Based on the above assumptions, these Class B “bounded” copyleft licenses can be thought of as

“file-based” licenses - meaning the viral effect of the copyleft provision only affects the file in

which the FOSS component is used, modified, incorporated, combined, etc. In other words, the

same license requirement is determined by the file or module in which the derivative work is

contained— thus, the copyleft obligation is ‘bounded.’21 To an extent, these licenses allow

developers to use FOSS code in a non-limiting manner.22 So succinctly, a newly-created file is

subject to the license requirements if it is a modification of an existing FOSS file.23 On the other

hand, newly (and independently) developed files are not subject to the requirement.24

Class C - Unbounded Copyleft Licenses. This class of FOSS licenses can be the most

problematic to use commercially because these licenses require that all combined files—even

those not containing FOSS code at all—must be licensed under the same license as the FOSS

project.25 This class of “unbounded” copyleft licenses presumes that the derivative works will

become part of a compiled program.26 Based on this assumption, the licenses require that any

new code (modified or not) from the FOSS project is required to use the same license.27

Philosophically, supporters of this class of strong, unbounded copyleft licenses included this

viral requirement to promote the availability of free software and to allow licensed projects to

become sources of additional, same-licensed FOSS code.28 Examples of this include GNU GPL

(Version 2 and 3), Common Public License, and Open Public License.29

Based on the above classification scheme, companies can add value by utilizing FOSS

components having commercially-friendly or commercially-adaptable FOSS licenses30,31

21 Phipps, supra note 9, at 4-5.
22 Id.
23 Id.
24 Id.
25 Id.
26 Id.
27 Phipps, supra note 9, at 5.
28 Id.
29 Id. at 7.
30 Note that the use of open source tools in the creation of software (as opposed to the incorporation of open
source code into a commercialized product) may not create any obligation to release any code created by the open
source tool as open source. Regardless of the end use, it is good practice to check all open source licenses to ensure
that there are no unintended consequences.



DOCSNY-407880v1

8

Generally speaking, non-copyleft licenses or perhaps even “weak-to-medium” or bounded

copyleft licenses (if use is monitored and controlled) may be acceptable in closed-source

commercial projects. Hence, Class A-licensed open source software may be more acceptable for

commercial use by a closed-source enterprise. With the appropriate controls and process in

place, Class B bounded copyleft licenses may also be used. Finally, it may be appropriate for

closed-source enterprises that are unfamiliar with open source control procedures to limit use of

Class C unbounded copyleft licenses until appropriate review and controls measures are put in

place.

In conclusion, utilization of FOSS components has many advantages and benefits, but challenges

to its unauthorized use are increasingly being tested in courts. With the above FOSS

categorization system, legal departments can more effectively and uniformly classify FOSS

licenses and monitor FOSS usage – as easy as ABC. Using a class-based policy or management

framework will be helpful in surveying the plethora of FOSS licenses and help to protect

company’s intellectual property rights through preventing the use of potentially exposure-

oriented FOSS; it can minimize potential liability because it provides for effective legal review

of FOSS use; and it will promote efficient software development because it opens the door to

approved FOSS-licensed code to be used in commercial development. In the end, with the

proper open source control measures and policy, open source and closed-source can peacefully

co-exist despite their inherent philosophical (and business model) differences.

31 Phipps, supra note 9.




